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Weak thermal vortex rings 
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(Received 28 February 1960) 

A similarity solution is obtained up to the &st order in an effective Rayleigh 
number for the behaviour of very weak thermal vortex rings produced by the 
rapid release of heat at one point of a large region of fluid. 

The laminar pattern of flow is similar to that in ordinary vortex rings, but the 
temperature decreases outwards from the centre in all directions with some 
asymmetry about the horizontalplane through the centre, and there is no accumu- 
lation of heat into the vortex ring. The vortex propagates slowly in relation to its 
rate of growth, and the process is dominated by viscous and thermal diffusion. 

Introduction 
The rapid release of a quantity of heat from a compact isolated source into a 

large region of fluid at rest will set in motion a small volume of heated fluid. As 
it rises, this buoyant fluid will grow in volume through conduction of heat and 
viscous diffusion of momentum outwards. Since the heated fluid is displaced 
upwards by ambient fluid from approximately its own level and in turn displaces 
ambient fluid from its path, the flow must have the general pattern of a vortex 
ring, although this may sometimes be obscured from the observer by an opaque 
envelope of marked fluid or by turbulence in and around the core. 

The behaviour of buoyant vortices formed by the release of buoyant fluid from 
rest can be characterized by a non-dimensional parameter which is proportional 
to the initial release of buoyancy and which plays a part corresponding to that of 
the Rayleigh number in problems where a length and a temperature difference 
are specified; it will be convenient to refer to it in this case also as a Rayleigh 
number. By analogy with the buoyant plumes that rise from steady sources of 
heat or other sources of pure positive buoyancy (positive in the sense that 
upwards motion is induced) it may be expected that for small over-all Rayleigh 
numbers the flow will be laminar in and around the corresponding vortex rings 
while for large Rayleigh numbers it will be turbulent. But in fact there is an 
additional strong source of stability in buoyant vortex rings which have light 
cores because the reduced density of fluid in the ring produces a stable 
stratification in the field of centrifugal force due to rotation about the core. Thus 
thermal vortex rings of normal type should have a stable pattern of laminar flow 
over an appreciable range of Rayleigh numbers, which will certainly include the 
range of small values that is to be considered here. Indeed there is evidence to 
show that, when sufficient time is available, initially turbulent regions of rising 
buoyant fluid will form into relatively well-ordered vortex rings (see, for example, 
Turner 1957). 
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When the Rayleigh number is negative, vortex rings have a heavy core and 
their behaviour shows a marked contrast. The rotating core is now inherently 
unstable to disturbances and will break up unless the Rayleigh number is small; 
moreover, vortex rings will not so readily grow from less ordered motions, at  any 
rate until density differences have been reduced to a low level. This type of 
behaviour may be illustrated by releasing drops of dyed salt solution just below 
the surface of a beaker of water. 

It may be noted that this difference in behaviour according as the Rayleigh 
number is positive or negative must be borne in mind when model experiments 
are designed, unless all density variations are kept very small. A further factor is 
that the behaviour of the accelerating surface of a volume of buoyant fluid will be 
different according as the fluid moving forwards is heavier or lighter than its sur- 
roundings (cf. Taylor 1950). 

The analysis of buoyant vortex rings which follows will be valid only for small 
values of the Rayleigh number, in which case a similarity solution can be found as 
a power series in the Rayleigh number for the momentum and energy equations 
including the effects of viscosity and thermal conductivity. Under these circum- 
stances the motion may be expected to remain laminar for a considerable time in 
the absence of grave disturbances in the ambient fluid, and provided that the 
Rayleigh number is positive. Hence the solution will represent, for suitable 
initial conditions, the behaviour of weak thermal vortex rings generated from rest 
by the rapid release of a small quantity of heat in the close neighbourhood of one 
point of an extensive region of fluid. The discharge of a thermal vortex ring with 
given initial circulation can be investigated by using appropriately modified 
initial conditions, but will not be included here. The results given below may be 
regarded as providing an asymptotic solution for weak buoyant vortex rings; an 
approximate treatment has already been given by Turner (1957) for stronger 
buoyant vortices. 

Formulation 
The idealized problem is the ascent, through a uniform environment of incom- 

pressible fluid, of the vortex ring generated from an instantaneous point source 
of heat. The flow will start impulsively from the virtual source, and for small 
values of the Rayleigh number will remain laminar over an appreciable distance 
so that it is appropriate to seek a similarity type solution. 

The motion is symmetrical about a vertical axis and it seems natural to use 
cylindrical polar co-ordinates for reference; in fact it is more convenient to use 
spherical polar co-ordinates ( r ,  8,$) with origin at  the point of release of heat and 
the axis 8 = 0 directed vertically upwards, because the analysis is concerned with 
finding patterns of velocity and temperature which in the similarity solution do 
not vary with time. The velocity components can be taken as (u, v, 0) since the 
system is independent of $; the time twill be measured from the instant of release. 
If it is now assumed: (i) that variations in density due to temperature changes are 
so small that they need only be taken into account in the buoyancy term; (ii) that 
the effects of dissipation and the pressure term in the energy equation are 
negligible; and (iii) that the kinematic viscosity v and the thermometric con- 
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ductivity K may be taken as constants; then the equations that represent the 
convective flow are 

(2) 

(3) 
a a 
- (rzu sin 0 )  + - (rv sin 0 )  = 0, 
ar ae 

aT aT vaT 
-+u-+-- = KV;T, 
at ar r ae (4) 

wherep is the fluid density, p the pressure excess over hydrostatic, T the tempera- 
ture in the vortex ring and To the uniform temperature of the ambient fluid, /3 the 
coefficient of expansion, and 

A stream function @ can be introduced, with 

1 a$ 2) = 1 a$ u = -- 
r2 sin 8 36 ' r sin B ar ' 

If p is now eliminated between (1) and (2), and (4) is rewritten in terms of the 
stream function, 

where the vorticity has components (0, 0, - .Z/r), and 

The initial conditions are that u and v are zero and T = To at t = 0 for all points 
of the field except r = 0, where there is a singular point; for t > 0 the field is free 
from singularities. The boundary conditions for t > 0 are 

u , v = O  and T=To  at r = m ;  i 
- 0  at e = o,n. _ -  ae, v, and -- - 1 au 1 aT 

r ae 
(7) 

The excess of heat in the vortex ring over that in the same volume of ambient 
fluid remains constant and is equal to the amount Q of heat released initially, 

where pF is the total initial release of buoyancy. 
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If a similarity solution of ( 5 )  and (6) exists it must be such as to relate r and t in 
the group r t t  if t is not to appear explicitly in the transformed equations. 
Using the same criterion, it may be shown that ( 5 )  and (6) are reduced to non- 
dimensional form by the transformations 

7 = 4 ( 2 K t ) ' t ,  

$ = K ( 2 K t P f  (7,@, 

P(T - T,) = - ~ ( 2 ~ t ) - t  h(7, el. 1 

9 

The reduced equations are 

The transformed boundary conditions are: 

i af - 0,  h = 0, at 7 =a; -_ - -0, 1 af 
v2 sin 8 ae 7 sin 8 a7 

and the integral condition reduces to 

The non-diment3ional parameter A = Pg&/pcKv = P/KV plays the same part in 
this problem as that of the Rayleigh number for cases in which a length and a 
temperature difference are specified, and it will also be referred to as a Rayleigh 
number here. For small values of A the flow in the thermal vortex ring should 
certainly remain laminar for a considerable time, and as the exact solution of ( 5 )  
and (6) will be difficult, this suggests that a solution should be obtained as a 
power series expansion in the Rayleigh number A .  Hence assume the expansions 

f = Af,+Azf ,+ ..., 
h = ho+Ahl+Azh,+ ..., 

where fi = fi(7, 0)  and hi = hi(7, 8). The termfo(7, 8)  is constant, since there is no 
motion when A = 0 (i.e. af/ar = 0, af/ae = 0 then), and this constant can be 
absorbed into f. Further, the value of ho(7, 8 )  can be found immediately from the 
theory of conduction of heat in solids; for when A = 0 (provided that K is finite 
and Q + 0) the heat spreads as by conduction in a uniform solid from an instan- 
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taneous point souroe. For such a case the solution given by Carslaw & Jaeger 
(1947) can be written in the present notation as 

(14) 

The other coefficient functions fi(q, 0) and hi(y,  0) can be found by substituting 
the expansions (12) and (13) into equations (8) and (9) and equating to zero the 
coefficients of powers of A in the two relations to give two sets of linear partial 
differential equations: 

ho(7, 8) = (em)-# e-h'. 

and 

... ... ... ... ... ... ... ..., 

where in equations (15) and (16) 5 has been taken in the form 

5 = 4 1 ( %  8) + A252(7, 6 )  + * * * Y  

so that 

and 0: has been written in place of Vi, @. The solution to equation (16a) satisfying 
the appropriate boundary conditions is known already; hence a solution of (15a) 
and (16b) will provide a first approximation to the behaviour of thermal vortex 
rings, that is a solution to the first order in the Rayleigh number. 

The analysis simplifies t-~ good deal for the particular case u = 1, and as this is 
sufficient to give a good idea of the behaviour of thermal vortex rings in gtlses and 
to demonstrate the important properties of these rings, only this case wil l  be 
pursued. 

As a result of the boundary conditions (lo), which do not depend on A ,  the 
following conditions are imposed on the fi and hi: 
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and from the integral condition (1 I), 

Solution 

differential equation 
The first approximation to the flow field. The vorticity variable Cl satisfies the 

a + (2n)-$ 7 sin 8 - (e-*qa), ( 18) 

where the Prandtl number has been given the value u = 1. No boundary condi- 
tions for Cl have been stated, but those on the related stream function variable 
fl(.r, 0) are given in (17). 

If Cl is assumed to be of form Cl = z(r]) sin 8, by substitution in (18) the depen- 
dent variable z(r]) must satisfy the ordinary differential equation 

ar] 

This has the general solution 

z = 1 ( c1 s,” t2  e-fta dt + c2) - +(2n)+ 7 2  e+a, 

involving two arbitrary constants c1 and c2. Although boundary conditions on 
Cl have not been stated, it is clear that c2 = 0 since, as r] + 0, z cannot diverge; 
however, it seems probable that at great distances from the point of release of 
heat 6 will decrease exponentially, whereas the term in c1 behaves as 7-1 and 
hence c1 = 0. It will be shown at the next stage that as a result of taking 

7 

Cl = - 9(2n)-$ 7 2 e - t ~ ~  sin 8, (20) 

the resultant solution fortl satisfies all the appropriate boundary conditions from 
set (17), and this confirms the value c1 = 0. 

The stream function fl(7, 0) satisfies the equation 

In this case the independent variable can be separated iffl(q, 0) is supposed t o  be 
of form .fl(r], 0) = y(7) sin2@, where 
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Equation (22) has the general solution 

where the arbitrary constants c3 and c4 can here be found from boundary condi- 
tions (17) as c3 = 0 and c4 = 0. It follows that the stream function variable 

0 

2 

4 

8 

10 t 
t ,  

PIUURE 1. The streamlines for the first approximation to the flow in a weak thermal vortex 
ring. Curves are shown for equal increments of the stream function. Only the right-hand 
half of the field of flow is shown, and the scale for the non-dimensional length 7 is Bhown 
on the dividing streamline. 

satisfies equation (18) written fully in terms of fl, and also satisfies appropriate 
boundary conditions from the set (17), so that it gives the first approximation to 
the flow field. The corresponding contributions to the components of the velocity 
field are 

Figure 1 shows a set of streamlines for the section of the vortex ring by the half 
plane q5 = 0 calculated from the first approximation fi(q, 8) given by (23) and 
drawn at equal increments of the stream function. The vortex ring character of 
the flow is brought out clearly, but the pattern differs from that of an ordinary 

8 Fluid Mech. 9 
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vortex ring without buoyancy (cf. Lamb, 1932, p. 238) in that there is a larger core 
to the ring. This is to be expected on account of the inherently stable nature of 
such a light core under the forces produced by rotation about its axis. 

The second approximation to the temperature Jield. This approximation will 
determine the temperature field up to the term in A ,  and is to be compared with the 
approximation to the flow field obtained above. The excess temperature variable 
h,(q, 0 )  satisfies the differential equation (16b) 

and if the solutions for h, and f, are substituted this reduces to 

The independent variables can be separated if it is supposed that h, is of form 
hl(7, 0)  = x(7) cos 8, where x(7) satisfies the ordinary differential equation 

The general solution of equation (24) can be written 

where .J(?p) erf(tlJ2) = e-+a2du. 

The boundary conditions on h,, that is on x cos 8, are that x(7) cos 8 + 0 as 7 -+ 00, 

q-lz(7) sin8 = 0 one = 0, n for all 7 including 7 = 0,  and the integral condition 

1: 

and hence c6 = 0 since x(0) = 0. The vaIue of c5 - ( 16n3)-l can be found using the 
integral condition, and the fact that this integral vanishes as the difference of two 
equal (but not large) parts; thus in spite of the fact that the integration over 0 is 
zero, the integration over 7 must also be finite and in consequence c5 - ( 16n3)-l = 0. 
Thus the excess temperature perturbation is given by 
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and the whole temperature field to the present approximation is 

This is symmetrical about the vertical (8 = 0, n) through the origin, and the effect 
of the term (26) just calculated is to provide a small increase in temperature above 
the horizontal plane through the origin and an antisymmetrical decrease in 
temperature below this plane. The modification is small, and at the point where 
h, has its greatest value amounts to roughly All00 times the magnitude of the 
initial term (relation (14)). The pattern of this modification due to the term 
hl(y, 0) is shown by itself in figure 3 for the upper half of the thermal vortex; for 

0 1 2 

rl 

FIQTJRE 2. The basic approximation to the temperature field for a weak thermal vortex 
ring. This is the, distribution produced in a solid by the instantaneous release of heat from 
a point. Curves are shown for equal increments of temperature (in tenths of the tempera- 
ture at the centre) ; at the broken curve the temperature is l/e of the central value, and this 
may be used to  compare the scale of the temperature and velocity field. 

purposes of comparison and so that the scale of the temperature distribution may 
be compared with that of motion (shown in figure 1) the first approximation to 
the temperature field (expression (14)) is illustrated in figure 2, again for the upper 
half of the thermal vortex only. Although there is a, maximum value of h, at a 
distance roughly 7 = 1 above the origin, because of the relative smallness of this 
term the point of maximum temperature in the fluid will be much nearer the 
origin. 

The point of the vortex ring at which the temperature is greatest will be 
vertically above the origin of release at a height which can be found by putting 
aT/ar = 0 from expression (27), and which is given by 

7=--- A 13(  - A )s+ 
6(2n)Q 10 6(2n)Q 

Thus to  the order of the present approximation 7 = A / [ 6 ( 2 ~ ) 4 ] .  
It may be noted that the distribution of heat in the thermal vortex ring is 

basically similar to the pattern of thermal diffusion from an instantaneous point 
reletwe of heat in a solid, with the modification produced by the term h1(y,@) 

8-2 
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shown in figure 3 and resulting in a displacement upwards of the heat relative to 
the flow field, so that temperatures are increased in the upper parts and decreased 
in the lower parts of the vortex ring. There is no concentration of heat into the 
core of a weak thermal vortex ring. 

I I I 

0 1 2 

1 
FIGURE 3. The next approximation (h,) to the temperature field plotted separately for the 
upper half of the thermal vortex; the contours shown are of equal temperature increase, 
while a similar set of contours below the dividing horizontal will correspond with lines of 
equal temperature decrease relative to the basic approximation shown in figure 2. Maxi- 
mum temperatures in this field are small relative to those at corresponding positions of 
figure 2. There is an increase of temperature corresponding to the upper half plane and a 
decrease for the lower. 

Behaviour of weak thermal vortex rings 
The next approximation to the flow field will introduce a small asymmetry 

which will have the effect of raising the level of the core axis above that of the 
origin in the similarity profle, but apart from this will introduce relatively little 
change in the flow pattern. Thus it will be sufficient to regard the ‘centre’ of the 
thermal vortex ring as the point at which the fluid temperature is a maximum, 
and this point can be identified with the information now available. According 
to this viewpoint, the actual height h of the vortex ring above its point of release 
at time t is approximately 

and the vertical velocity V of the vortex ring is 

In addition, the radius R of the vortex ring measured from the vertical axis to  
the centre of the core is 

R = 1*512,/(2&), 

KA 
437 

and the circulation K is K = - ,  
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The energy of the system is 

117 

and the impulse is wholly upwards with magnitude 

It should be noted that these have been calculated from the solution for r~ = 1 
(i.e. v = K ) ;  they should give a good approximation for values of c not too great 
or too small relative to unity, but in this case K in the results above should be 
replaced by ( K Y ) )  to  take account of the equal importance of thermal conduction 
and viscous diffusion in establishing the character of convection. 

It is possible now to compare these results with those of Turner (1957),  although 
it must be borne in mind that Turner considered relatively strong vortex rings in 
which much of the buoyancy is concentrated into a ring core, whereas in these 
weak thermal vortices there is no concentration of the heat into a ring. Indeed the 
special features of these weak vortices is that they combine a flow field which is 
very much the same as that of a normal vortex ring, with a completely different 
distribution of temperature with a central maximum and temperature decreasing 
radially outwards in all directions and with a small asymmetry about the 
horizontal. The diameter of the ring increases linearly with height according as 

AR = 45.5h; 

hence the rate of spread of a weak thermal vortex ring in terms of its rate of 
propagation is very much greater than for a normal buoyant vortex ring (for 
which R = 0-2h, say, from Turner). In  fact the very weakest vortices scarcely 
propagate a t  all, although they increase in size at  the same rate (depending only 
on K V )  as stronger ones. This brings out clearly the fact that the growth of weak 
vortices is due essentially to molecular diffusion (thermal and viscous) and not to 
the more familiar process of mixture with the environment produced by drawing 
ambient fluid into the rear of the ring. Moreover, this explains the differences 
found in the temperature field, for any ambient fluid which is drawn into the 
centre of a weak vortex enters so slowly that on the way it is heated by conduction 
to very nearly the previous temperature at the centre. 

It may be noted that the circulation K remains constant and is proportional 
to the Rayleigh number A ;  thus the flow in the vortex ring is started impulsively 
at the initial instant, though the ring itself moves off from rest. The impulse, 
P = 1-094pKR2, is proportionally smaller than the value taken by Turner on 
account of the lower rate of propagation of weak vortices. The value of Turner’s 
constant c = VR/K is in this case 0.20; this is surprisingly close to his experi- 
mental value 0-27 found for strong buoyant rings of orthodox pattern, because 
the decrease in velocity is offset by the increase in radius, and it may well be that 
this constant varies little over a very wide range of vortex strengths. 

The arguments for stability of the normal vortex ring no longer apply when 
the heat is concentrated towards the centre and not into the ring, and there is no 
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reason why weak thermal vortices should be particularly stable to disturbances. 
If the flow becomes unsteady there wi l l  be increased mixing with the ambient 
fluid in the outer sheaths and fluid drawn back towards the centre will be colder. 
This is probably the way in which orthodox vortex rings are produced. 

As far as can be estimated from the solution to the stage it has been calculated, 
the results are likely to give a reasonably good picture of thermal vortices up to 
Rayleigh numbers of 10 or more, and in the absence of stability effects this 
behaviour is unlikely to change radically up to Rayleigh numbers of a few 
hundred, say. However, even these correspond to a release of heat in air of the 
order of a thousandth of a calorie, or in water of a calorie. And so the solution 
given above is of very little practicaluse, although it is interesting because it shows 
the existence of a different temperature distribution in weak thermal vortex 
rings, and because the solution in closed form can be used for a number of 
calculations. 
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